GLAUCOMA

What is it?

A disease of progressive optic neuropathy with loss of retinal neurons and their axons (nerve fiber layer) resulting in blindness if left untreated.
“Glaucoma describes a group of diseases that kill retinal ganglion cells.”

“High IOP is the strongest known risk factor for glaucoma but it is neither necessary nor sufficient to induce the neuropathy.”

GLAUCOMA

What causes it?

There is a dose-response relationship between intraocular pressure and the risk of damage to the visual field.
GLAUCOMA

ADVANCED GLAUCOMA INTERVENTION STUDY

Low Pressure Reduces Vision Loss

AGIS Study

Mean IOP

- 20.2 mm Hg
- 16.9 mm Hg
- 14.7 mm Hg
- 12.3 mm Hg

Follow-up month

GLAUCOMA

How do we diagnose it?

- IOP is not helpful diagnostically until it reaches approximately 40 mm Hg at which level the likelihood of damage is significant.
- Visual fields are also not helpful in the early stages of diagnosis because a considerable number of neurons must be lost before VF changes can be detected.
- Optic nerve damage in the early stages is difficult or impossible to recognize.
- 50% of people with glaucoma do not know it!
GLAUCOMA

Intraocular pressure is not the only factor responsible for glaucoma!

- 95% of people with elevated IOP will never have the damage associated with glaucoma.
- One-third of patients with glaucoma do not have elevated IOP.
- Most of the ocular findings that occur in people with glaucoma also occur in people without glaucoma.
CHARACTERISTICS OF IOP

- Normal range: 10-22 mm Hg
- Follows non-Gaussian curve with right skewed tail
- 30-50% of open angle glaucoma patients have IOP <22 mmHg
- Diurnal fluctuation normally < 6 mmHg
- Women have slightly higher pressures
GLAUCOMA

Anatomy of anterior chamber angle
GLAUCOMA

Iris bombé
GLAUCOMA

Population distribution of IOP
GLAUCOMA

IOP Variables

Gender influences:

Normal vs glaucoma:
GLAUCOMA

Angle Anatomy

Normal Angle
How do we measure IOP?

- Applanation
- Tonopen
- Schiotz
- Air
- Non-contact
GLAUCOMA

Tonometry

Applanation

Schiotz
GLAUCOMA

Goldmann applanation tonometer
GLAUCOMA

Tonopen
GLAUCOMA

Goldmann perimeter

Glaucoma visual fields
GLAUCOMA

The normal visual field: an island of vision in a sea of darkness:
THE VISUAL FIELD

Humphrey automated perimetry
GLAUCOMA

Visual fields in glaucoma

Early

Late

<table>
<thead>
<tr>
<th>GHT</th>
<th>Outside normal limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>-14.33 dB P < 0.5%</td>
</tr>
<tr>
<td>PSD</td>
<td>12.13 dB P < 0.5%</td>
</tr>
</tbody>
</table>

Total Deviation

Pattern Deviation

< 5%

< 2%

< 1%

< 0.5%
GLAUCOMA

Cup-to-disk ratio
GLAUCOMA

DISK CUPPING

Normal Glaucoma
GLAUCOMA

Glaucomatous cupping
GLAUCOMA

The histology of glaucomatous optic nerve cupping:

Normal:

Glaucomatous:
GLAUCOMA

Optic nerve signs of glaucoma progression

- Increasing C:D ratio
- Development of disk pallor
- Disc hemorrhage (60% will show progression of visual field damage)
- Vessel displacement
- Increased visibility of lamina cribosa
GLAUCOMA

Ocular hypertension treatment study
(OHTS study)

- **GOALS:** To evaluate the effectiveness of topical ocular hypotensive medications in preventing or delaying visual field loss and/or optic nerve damage in subjects with ocular hypertension at moderate risk for developing open-angle glaucoma (POAG).

- **POPULATION:** 1636 participants aged 40-80 years with IOP 24-32 mm HG in one eye, and 21-32 in the other, randomly assigned to observation and treatment groups.
GLAUCOMA

OHTS parameters

- **TREATMENT GOALS:** Reduce pressure to less than or equal to 24 mm Hg with a minimum pressure reduction of 20% from the baseline.

- **OUTCOME MEASURES:** Development of reproducible visual field abnormality or development of optic disc deterioration.

- **MEDICATIONS USED:** beta-adrenergic antagonists, prostaglandin analogues, topical carbonic anhydrase inhibitors, alpha-2 agonists, parasympathomimetic agents, and epinephrine.
At 60 months, the probability of developing glaucoma was:
9.5% in observation group
4.4% in treatment group
GLAUCOMA

OHTS parameters that influence the risk of developing POAG

- IOP
- Age
- Cup-disk ratio
- Central corneal thickness
Percentage of OHTS participants in observation group who developed POAG (mean follow-up = 72 mo)

IOP vs central corneal thickness
GLAUCOMA

Percentage of OHTS participants in observation group who developed POAG (mean follow-up = 72 mo)

Vertical CD ratio vs central corneal thickness
GLAUCOMA

Normal central corneal thickness: 545 – 550 µ

Add or subtract 2.5 mmHg for each 50 µ change in central corneal thickness
GLAUCOMA

Types of glaucoma

I. Primary:
 A. Congenital
 B. Hereditary
 C. Adult (common types)
 1. Narrow angle
 2. Open angle
 (Normal tension glaucoma)

II. Secondary
 A. Inflammatory
 B. Traumatic
 C. Rubeotic
 D. Phacolytic
 etc.
Congenital Glaucoma

Onset: antenatally to 2 years old

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritability</td>
<td>Elevated IOP</td>
</tr>
<tr>
<td>Photophobia</td>
<td>Buphthalmos</td>
</tr>
<tr>
<td>Epiphora</td>
<td>Haab’s striae</td>
</tr>
<tr>
<td>Poor vision</td>
<td>Corneal clouding</td>
</tr>
<tr>
<td></td>
<td>Glaucomatous cupping</td>
</tr>
<tr>
<td></td>
<td>Field loss</td>
</tr>
</tbody>
</table>
Congenital Glaucoma

Buphthalmos and cloudy corneas
Congenital Glaucoma

Buphthalmos, glaucomatous cupping, and cloudy cornea OD

Haab’s striae

Normal OS
Narrow Angle Glaucoma

Onset: 50+ years of age

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe eye/headache pain</td>
<td>Red, teary eye</td>
</tr>
<tr>
<td>Blurred vision</td>
<td>Corneal edema</td>
</tr>
<tr>
<td>Red eye</td>
<td>Closed angle</td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>Shallow AC</td>
</tr>
<tr>
<td>Halos around lights</td>
<td>Mid-dilated, fixed pupil</td>
</tr>
<tr>
<td>Intermittent eye ache at night</td>
<td>“Glaucomflecken”</td>
</tr>
<tr>
<td></td>
<td>Iris atrophy</td>
</tr>
<tr>
<td></td>
<td>AC inflammation</td>
</tr>
</tbody>
</table>
GLAUCOMA

Angle anatomy

Grade I Grade 0 Grade III Grade II

Grade I angle (slitlike angle) Potentially can be occluded

Grade 0 angle (closed angle) Complete occlusion

Grade III angle (wide open) Cannot be occluded

Grade II angle (open angle) Angle approach slightly narrower than Grade III; angle structures less visible, cannot be occluded
GLAUCOMA

Anatomy of Angle Closure Glaucoma
Narrow Angle Glaucoma

Mid-dilated, fixed pupil
Narrow Angle Glaucoma

Treatment: Peripheral Iridotomy
Open Angle Glaucoma

Aka: chronic simple glaucoma (CSG) and primary open angle glaucoma (POAG)

Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Age</td>
<td>Myopia</td>
</tr>
<tr>
<td>Race</td>
<td>Gender</td>
</tr>
<tr>
<td>Family history</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Central corneal thickness</td>
<td>Hormones</td>
</tr>
</tbody>
</table>
Open Angle Glaucoma

Onset: 50+ years of age

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually none</td>
<td>Elevated IOP</td>
</tr>
<tr>
<td>May have loss of central and peripheral vision</td>
<td>Visual field loss</td>
</tr>
<tr>
<td>late</td>
<td>Glaucomatous disk changes</td>
</tr>
</tbody>
</table>
Normal Tension Glaucoma
(NPG, LTG, LPB, NTG)

- Similar to OAG but IOP always < 21 mmHg
- Higher prevalence of vasospastic disorders, blood dyscrasias, autoimmune diseases
- May be related to episodic hypotension, hyopthyroidism
- A diagnosis of exclusion!!!
Open Angle Glaucoma

Risk factors

HISTORY:
- Positive family history
- African American and Hispanic background
- History of trauma
- History of steroid use

EXAMINATION:
- C/D 0.6 or greater
- Vertical elongation of disc
- Inf. rim thinner than sup.
- C/D asymmetry > 0.2
GLAUCOMA

Treatment

Medical
- Miotics
- Beta-blockers
- Carbonic anhydrase inhibitors
- Prostaglandin analogues
- Alpha-2 agonists

Surgical
- Argon laser trabeculoplasty
- Trabeculectomy
- Filtering procedure
- Cyclocryotherapy
- Cyclolaser ablation
- Iridotomy
GLAUCOMA

Treatment

Mechanisms of Action of Glaucoma Medication

<table>
<thead>
<tr>
<th>Medication</th>
<th>Increase outflow facility?</th>
<th>Increase uveoscleral outflow?</th>
<th>Decrease aqueous flow?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bimatoprost</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Latanoprost</td>
<td>???</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Travoprost</td>
<td>???</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Brimonidine</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Timolol</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Dorzolamide</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table 1. When selecting an adjunctive medication, consider agents with complementary mechanisms of action. (Figure taken from 3 Targets series)
GLAUCOMA

Surgical treatment of glaucoma

Argon laser trabeculoplasty

Filtration procedures
GLAUCOMA

Filtration blebs

Filtering Surgery
GLAUCOMA

Genetics

- Three causative genes found: MYOC (myocilin); OPTN (optineurin); and WDR36 (WD repeat domain 36)
- So far, 20 loci involving myocilin (MYOC) have been found in humans
- Myocilin levels are ubiquitous and uniform
- Outflow facility decreased in mutants
- Myocilin not found in aqueous humor of mutants but higher concentrations in trabecular meshwork
- Myocilin found intra- and extracellularly but not in nucleus
- Prolonged and dramatic induction by steroids
- Mutations in MYOC inhibits extracellular appearance of MYOC exosomes in TM cells
THANK YOU ALL FOR LISTENING!